Forecasting of Financial Markets via Neural Network
نویسنده
چکیده
Artificial neural network is one of the intelligent methods in Artificial Intelligence. There are many decisions of different tasks using neural network approach. The forecasting problems are high challenge and researchers use different methods to solve them. The financial tasks related to forecasting, classification and management using artificial neural network are considered. The technology and methods for prediction of financial data as well as the developed system for forecasting of financial markets via neural network are described in the paper. The designed architecture of a neural network using four different technical indicators is presented. The developed neural network is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is a training algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise. The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data. Key-Words: neural networks, forecasting, training algorithm, financial indicators, backpropagation
منابع مشابه
A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کاملForecasting Gold Price Changes: Application of an Equipped Artificial Neural Network
The forecast of fluctuations and prices is the major concern in financial markets. Thus, developing an accurate and robust forecasting decision model is critically favorable to the investors. As gold has shown a special capability to smooth inflation fluctuations, governors use gold as a price controlling lever. Thus, more information about future gold price trends will help to make the firm de...
متن کاملApplication of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets
Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...
متن کاملForecasting Stock Price using Hybrid Model based on Wavelet Transform in Tehran and New York Stock Market
Forecasting financial markets is an important issue in finance area and research studies. On one hand, the importance of prediction, and on the other hand, its complexity, have led to huge number of researches which have proposed many forecasting methods in this area. In this study, we propose a hybrid model including Wavelet Transform, ARMA-GARCH and Artificial Neural Network (ANN) for single-...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کامل